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ABSTRACT

Recent advances in speaker verification and speech processing tech-

nology have seen voice authentication being adopted on a wide

scale in commercial applications like online banking and customer

care support and on devices such as smartphones and IoT voice as-

sistant systems. However, it has been shown that the current voice

authentication systems can be ineffective against voice synthesis

attacks that mimic a user’s voice to high precision. In this work, we

suggest a paradigm shift from the traditional voice authentication

systems operating in the audio domain but susceptible to speech

synthesis attacks (in the same audio domain). We leverage a motion

sensor’s capability to pick up phonatory vibrations, that can help

to uniquely identify a user via voice signatures in the vibration do-

main. The user’s speech is played/echoed back by a device’s speaker

for a short duration (hence our method is termed EchoVib) and the

resulting non-linear phonatory vibrations are picked up by the mo-

tion sensor for speaker recognition. The uniqueness of the device’s

speaker and its accelerometer results in a device-specific fingerprint

in response to the echoed speech. The use of the vibration domain

and its non-linear relationship with audio allows EchoVib to resist

the state-of-the-art voice synthesis attacks, shown to be successful

in the audio domain.

We develop an instance of EchoVib using the onboard loud-

speaker and the accelerometer embedded in smartphones, as the

authenticator, based on machine learning techniques. Our evalu-

ation shows that even with the low-quality loudspeaker and the

low-sampling rate of accelerometer recordings, EchoVib can iden-

tify users with an accuracy of over 90%. We also analyze our system

against state-of-art-voice synthesis attacks and show that it can

distinguish between the morphed and the original speaker’s voice

samples, correctly rejecting the morphed samples with a success

rate of 85% for voice conversion and voice modeling attacks. We be-

lieve that using the vibration domain to detect synthesized speech

attacks is effective due to the hardness of preserving the unique

phonatory vibration signatures and is difficult to mimic due to
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1 INTRODUCTION

Voice-based technology has gained popularity in many mobile

and online commercial systems with increased use in personal

[52] and business contexts, to interact online with their customers

[38]. Financial institutions like Barclays [2], HSBC [3], and Wells

Fargo [7] utilize voice authentication for mobile and online bank-

ing customers [44]. Several voice authentication applications (Nu-

ance FreeSpeech customer authentication platform, Nuance Vo-

calPassword voice biometric authentication system, virtual home

assistance devices such Amazon Echo and Google Home, Voice

Password, and Voice Screen Lock) also offer voice recognition ca-

pability. Personal mobile devices such as smartphones, laptops and

wearables utilize voice authentication for unlocking the devices or

launching on-board voice assistants as an additional, easy-to-use

security feature [5, 6, 34, 53]. It is also deployed at the application

level to provide added security that prompts for user identification

via speech at an application launch [39, 51]. Standalone voice assis-

tant systems such as Google Home and Amazon Echo are trained to

recognize and execute only an authorized user’s voice commands.

Voice authentication uniquely verifies a user by the pitch, tone,

and volume of their speech forming the user’s voice profile. Once

a classification model is trained on this voice profile, a user can

authenticate via a challenge-response mechanism. For verification,

the system proposes a challenge to the user requiring a response

in the user’s voice. A user is authorized if the response fulfills the

challenge and the responding voice matches the stored voice signa-

ture of a legitimate user. However, it has been shown that the voice

authentication systems are prone to attacks that attempt to fool

the system into accepting an unauthorized user. A potentially dev-

astating form of such an attack is the voice synthesis attack where
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an attacker tries to impersonate a legitimate user through voice

synthesis. These attacks are easy to implement and only require a

limited number of short speech samples of a few seconds each, from

the victim, for training. Voice synthesis attacks can be launched

using a microphone to record the legitimate user’s voice samples

and use any publicly available speech transformation techniques

(CMU Festvox voice converter [19]), or voice modeling technology

(e.g., Lyrebird [46]). These attacks are shown to be highly effective,

with voice synthesis attacks being successful up to 80%-90% on

automated voice recognition systems [49].

We propose a novel voice authentication method based on the

unique speech footprints captured by the motion sensors in the

vibration domain. We make use of the motion sensors’ ability (ac-

celerometer, in particular) of picking upminimal vibrations to detect

and record the acoustic vibrations. These acoustic vibrations, gener-

ated from the speakers — when an authenticating user’s voice

response is replayed for a short duration (e.g., 1-2 seconds) —

produce a unique imprint on the motion sensor recordings. Using

this method, we can perform user authentication by utilizing their

speech patterns, captured in the vibration domain. This approach

can be applied to not only speaker verification for online services

but also in the case of personal usage such as smartphone/smart

device access and smart voice assistant scenario.

Our method, EchoVib (Figure 1), is based on the premise that

vibration features of the user’s speech are unique and are hard

to imitate or synthesize by a spoofing attack (for example, [49]).

This premise is supported by prior research in linguistics [27]

which argues that motion-sensing devices like accelerometers can

be used for monitoring vocal characteristics such as pitch range,

distributions, perturbations, and time domain features such as

voice/voiceless ratios, word and syllable duration, speech rate, and

pitch change over time. These vocal characteristics can be captured

by the accelerometers due to their “airborne-signal-rejecting” capa-

bility, and as such are different from vocal characteristics captured

by a microphone. Sundberg et al. [57] referred to these speech vi-

bration features, in the context of singing, as phonatory vibrations.

Thus, authentication in EchoVib is derived from the vibrations in

the device but crucially the device replaces the human vocal tract

as the source of the speech.

Audio playback of the user’s response via a device’s speakers is

crucial to EchoVib because this playback produces on-board phona-

tory vibrations that can be captured by the motion sensors residing

on the device. Das et al. [28] showed that imperfect fabrications

during the manufacturing of speakers in the smartphones lead to

anomalies during sound production. These anomalies have been

found to be unique for each smartphone device making them ideal

for device fingerprinting. Moreover, imperfections in accelerome-

ters also lead to device-specific response [20, 29, 33]. This result,

when combined with [28], leads to a vibration-based authentication

mechanism that is also tied to each individual device. Live aerial

speech signals are not strong enough to affect these sensors (at

least on the typical smartphone devices) as shown in [14, 27],

thereby highlighting the need for playback for our purpose. An

example usage scenario of EchoVib could be: when a user needs to

be verified while making a payment during online shopping using

a smart device like Alexa or HomePod, the user would need to utter

the phrase “Alexa, make payment using XYZ card” and the EchoVib

app on the device would replay the user’s command for verification

(even partial replay for short duration is sufficient).

Voice synthesis attacks exploit spectral features of the victim’s

voice (as captured in the audio domain by a microphone) by gener-

ating audio samples that mimic the victim’s voice, thereby fooling

most state-of-the-art audio-domain voice authentication systems.

EchoVib works on using a live human speech’s phonatory vibra-

tion response as captured in the vibration domain by the motion

sensors. We show that these synthesized voice samples do not con-

tain the phonatory vibration features of the victim’s voice samples.

Thus, even though these synthesis attacks have succeeded against

machine-based speaker verification systems (e.g., Universal Back-

groundModeling in Gaussian Mixture Model (UBM-GMM) [54] and

Inter-Session Variability (ISV) [61]) [49] by mimicking the audio

frequency response, they are unsuccessful against the proposed

EchoVib mechanism (Appendix Figure A.2).

EchoVib is resilient to synthesis attacks in the vibration domain

due to the non-linear mapping of vibrations from the audio and the

uniqueness of the device’s components generating and recording

the speech vibrations. The vibrations generated by a speech sam-

ple not only depend on the speech sample characteristics but also

on the source generating the vibrations in response to the speech

signal. In [27], the vibration source was the human vocal tract,

while in our proposed EchoVib it is the device that plays backs

(echoes) the speech. Thus, the proposed authentication model com-

prises of user’s speech features and the device fingerprint (vibration

generating characteristics) that generates the unique vibrations cor-

responding to the user’s speech. Prior works [20, 28, 29, 33] show

that subtle differences in the speakers and the accelerometers in

the smartphones make each device (even that of the same hardware

make and model) unique. This implies that EchoVib relies on both

the uniqueness of the speech vibrations (from the speakers) and

that of the accelerometer and will thus be resistant to the synthe-

sis attacks. Additionally, the attacker needs to generate a correct

response to the EchoVib challenge-response authenticator, while

synthesizing a vibration response that could pass the verification.

Overall, the attacker would need to match the vibration characteris-

tics and build the correct answer to the posed verification challenge,

which is fundamentally challenging to accomplish simultaneously.

We outline the design of our proposed authentication system

and its workflow in Figure 1. The user-facing device * is the input

interface that accepts the user’s response to a challenge-response

setup that needs to be authenticated. An example is a smart device

(smartphone, Google Home, Amazon Echo, Apple HomePod, etc.)

with a microphone to capture speech. The EchoVib component �

consists of a speech echoing (via a loudspeaker) and a vibration

sensing (via an accelerometer) device. This component can be real-

ized by using the on-board loudspeaker and the accelerometer of a

smartphone. The speaker authentication entity � is responsible for

processing the vibration signature extracted from the user’s speech

sample output by �. It matches the received vibration signature

to a stored model of phonatory vibrations of a legitimate speaker.

Finally, the result of the authentication process is sent back to * .

Our Contributions: In this work, we propose an authentication

method that aims to improve upon the security of the current voice-

based authentication systems. We use an MEMS accelerometer to
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Figure 1: Ahigh-level overviewof the proposed EchoVib authentication system. Short play-
back of user’s speech is sufficient to identify the user.

measure the unique vibrational signatures of the user’s voice re-

sponse, replayed via speakers. We apply off-the-shelf hardware and

standard machine learning techniques to implement our proposed

method and perform speaker authentication, under benign and

previously mentioned state-of-the-art voice synthesis attacks.

(1) Design & Implementation of a Novel Voice Authentication

System: We propose a new authentication system (Section 3)

that is based on capturing an individual’s voice signature in

the vibration domain. We develop an instance of our authen-

tication system, using standard machine learning techniques

and inexpensive hardware (the embedded accelerometer and

the loudspeaker on smartphones). While we apply standard

techniques in our voice classification task, we comprehensively

analyze different feature sets and classification algorithms that

allow unique identification of individuals, from the vibrations

of their speech, even if the sampling rate of the voice-vibration

sensing device (accelerometer on the smartphones) is low. Our

design rationale is further supported by the measurements from

a high-resolution laser doppler vibrometer.

(2) System Performance in Benign Scenario: The proposed

method is tested on a total of 30 speakers from three datasets

(10 speakers each). It is able to authenticate a speaker with high

accuracy (true positive ≥ 97%; F-measure ≥ 95%) as shown in

Section 5. These results indicate that our method can solely

identify a speaker using the vibration pattern of their voice.

(3) Resilience against Voice Synthesis A"acks:We evaluate our

proposed method against state-of-the-art voice conversion at-

tacks (Section 6.2). We show that our authentication method is

secure against these attacks due to the hardness of the vibration

pattern imitation. Our proposed authentication method is able

to distinguish between the converted voice and the original

voice with correctly identifying over 85% of the fake samples

when trained on an original speaker’s voice samples.

We also test our system against the state-of-the-art voice mod-

eling attacks that claim to produce natural sounding human

voices, using advanced deep learning algorithms (Section 6.3).

We use Lyrebird’s [46] voice modeling service to convert the

voice samples collected from Amazon Mechanical Turk volun-

teers into synthesized speech and test them against EchoVib.

Our proposed system is able to distinguish and reject over 86%

of the generated voice samples when trained to recognize only

the original voice samples for each user.

2 BACKGROUND AND RELATEDWORK

2.1 Voice Authentication in the Audio Domain

Authentication Features: Current voice authentication systems

rely on extracting and distinguishing an individual’s voice features.

For instance, short-term spectral based features (e.g., MFCC [50]

and spectral subband centroids (SSCs) [42]) are usually used to

describe a voice’s timbre as well as the resonance properties of the

supralaryngeal vocal tract, which can be used to distinguish peo-

ple’s voices. Moreover, spectro-temporal features (e.g., modulation

frequency [16]) could show the details of a signal’s formant/energy

transitions and have been demonstrated to contain useful speaker-

specific information. Additionally, prosodic features (e.g., funda-

mental frequency, speaking rate, and energy distribution) refer to

non-segmental aspects of speech like syllable stress and intonation

patterns, which can also be used for speaker recognition [11, 18].

Voice Impersonation Attacks: Although it has been shown that

the aforementioned features can be successfully used for speaker

recognition, they are vulnerable to impersonation or spoofing at-

tacks. An adversary could impersonate or synthesize the victim’s

voice by using the recordings of their daily speeches and using voice

synthesize techniques [45] to compromise the system. In addition,

the adversary could modify any speaker’s voice to sound like the

victim to spoof the system by using voice morphing tools [49].

Defenses in the Literature: Recent studies show that advanced

speaker models, such as Gaussian mixture model-universal back-

ground model (GMM-UBM) [13] and i-vector models [36, 37], could

detect voice impersonation. The method proposed in [13] could

detect 95.83% of the disguised voices, generated by human voice

artists. To defeat the synthetic speech attack, features based on the

relative phase shift to classify HMM-based synthetic speech from

human speech is proposed [30]. It is able to detect synthetic speech

up to 97.5%, while retaining the ability to perform authentication

at 97.0%. This method however needs to be trained using the same

voice encoding algorithm as the attacker. Wu et al. [65] proposed

modulation features to capture speech variation cross frames for

detecting synthetic speech. They reported an equal error rate of

7.17% (MFCC + magnitude modulation) and 0.89% (Modified group

delay cepstral coefficients + phase modulation). The data corpus re-

quired for training (4000 human and synthetic speech samples each

for training, 3000 each for development) is however significantly

bigger than the one used in our work.

Researchers recently proposed to determine the liveness of

the sound source by exploiting the physical features of human

speech [9, 24, 67, 68]. To defend against the impersonating sound

from a loudspeaker, Chen et al. [24] utilized the magnetic field

emitted from the electro-acoustic transducer. VoiceLive [68] and

VoiceGesture[67] exploit time-difference-of-arrival (TDoA) and

Doppler shifts to detect the dynamic acoustic characteristics for

liveness. However, these liveness detection approaches target to

verify the speaker in front of the smartphone, which requires the

phone to be held close to the speaker’s mouth. Moreover, Feng et

al. [35] perform user authentication on operating voice assistant

(VA) systems through a specialized eyeglasses worn by the user.

The eyeglasses are equipped with an accelerometer under high

frequency (i.e., 64:�I) which captures the user’s body-surface vi-

brations used to match with the voice command. This method,

however, requires an extra dedicated device like a smart glass to

perform authentication in contrast to EchoVib.

Another effort to detect spoofed/fake voice attacks was by Auto-

matic Speaker Verification Spoofing and Countermeasure challenge

Session 1B: Cyber-physical Systems  ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

69



(ASVSpoof) [1]. The challenge aims to develop a generalized ap-

proach towards detecting spoofed or voice conversion attacks, by

developing a classifier that can perform well against both known

and unknown spoofing attacks. [64] explored the automatic speech

recognition systems’ vulnerability against voice spoofing and con-

version methods and evaluated the feature-based anti-spoofing

countermeasures. They reported a false acceptance rate (FAR) of

below 1.0% against known spoofing attacks. The FAR against un-

known attack was 12.3% and the proposed method did not perform

well against SS-MARY attack [56].

Our proposed mechanism produces a comparable accuracy for

detecting synthesized voice, without relying on known spoofing al-

gorithms and a big training dataset. Our reported accuracies (> 85%)

are comparable to [64] as we do not rely on previous knowledge of

the voice synthesis algorithm. Prior works [30, 65] have reported

better accuracies but with significant constraints such as prior

knowledge of voice encoder used by the attacker or a large training

dataset. Some of these detection techniques are also computation-

ally intensive and often require substantial training data. Addition-

ally, these approaches rely solely on the audio domain, unlike our

proposed system EchoVib. Hence, they are vulnerable to an adver-

sary who possesses the knowledge of the system’s authentication

features and speaker model in the audio domain. Our approach is

orthogonal as it works in the vibration domain and can be used in

conjunction with the audio domain approaches such as [64].

We have explored the unique effect of the speech played by the

phone’s built-in speakers on its own motion sensor to distinguish

speakers and defend against both voice conversion and synthesis

attacks. In particular, by working in the vibration domain, EchoVib

can resist the traditional voice synthesis attacks that mimic the

features of a given user’s voice in the audio domain. Our approach

can be seamlessly integrated with traditional voice authentication

systems and other defenses that operate in the audio domain, to

provide an additional important layer of security.

In [28], both the micro-speakers and the microphones found

in smartphones, could be used to fingerprint the device with a

high degree of accuracy, even with devices of the same make and

model. The work in [20, 29, 33] concluded that hardware imperfec-

tions in sensors such as accelerometers can be utilized for uniquely

identifying an individual smartphone (device fingerprinting). In

addition, [29] also inferred that audio simulation applied to the

motion sensors can indeed improve the sensor fingerprinting re-

sults. These results justify our premise that the audio simulation

of the accelerometer via human speech, produces device-specific

phonatory vibrations that can be leveraged as an authentication

factor, resilient to the traditional voice synthesis attacks.

2.2 Speech in the Vibration Domain

Motion sensors (i.e., accelerometer and gyroscope) are used in

mobile devices and speakers (e.g., HomePod) to meet the demands

of various applications. They consist of MEMS structures, which

could be easily affected by sound and noises [22, 31, 32]. Due to

the effect of sound on motion sensors, WALNUT [60] models the

physics of acoustic injection attacks on accelerometers and shows

the outputs of sensors are subjected to the acoustic interference.

Moreover, an external loudspeaker sound source has been proved

to impact motion sensors. For instance, Gyrophone [47] shows that

gyroscope could be used in an attack to measure acoustic sound

from a loudspeaker sharing the same surface as the sensor/phone

and compromise speech privacy (e.g., speech contents) through

classification. Speechless [14] further points out, to launch such an

attack, there is an essential need for a shared surface between the

external loudspeaker and the device containing the motion sensor,

which can capture the conductive vibrations.

EchoVib verifies the speech played back by the device’s loud-

speaker, using its built-in motion sensors. Accelword [66] demon-

strated the smartphone’s accelerometer capability to extract hot-

words (e.g., Okay Google) from human voices. EchoVib further

performs user verification (a defensive application, in contrast to

the offensive applications explored in Gyrophone) by examining the

unique effect on motion sensors when the sound source comes from

the device’s built-in speakers. Our solution can be implemented by

using off-the-shelf hardware and software, easily integrated with

most of the mobile devices and voice assistant systems.

3 OUR APPROACH

3.1 Overview

Traditional voice authentication schemes utilize the spectral fea-

tures of speech for speaker classification. In EchoVib, we use the im-

pact of speech on motion sensors (accelerometer, in particular) such

as the ones ubiquitously found in smartphones to defend against

voice synthesis attack. The speech, when played via a loudspeaker,

generates a vibrational response within the device housing the

speaker (in our case, a smartphone) or on the device’s body and the

surrounding surface (in case of an external loudspeaker). This vibra-

tional response is due to the motion of the speaker cone/diaphragm,

which is produced due to an underlying coil motion generated from

varying magnetic field. Our model assumes that the speech features

used in voice authentication, also produce a unique response in the

vibration pattern of the speaker diaphragm (henceforth referred to

as vibrational features of speech). This response can be recorded

by the motion sensors and utilized for speaker recognition.

In this work, we implement EchoVib on smartphones as they

have the necessary hardware �: a loudspeaker to replay/echo the

user’s response (in a challenge-response setup) and an on-board

accelerometer to record the resulting vibration signature of the

user’s response, on the same device (Figure 1). In the benign use

case scenario, the user trains the system on their verbal responses,

similar to the voice authentication systems. The verbal responses of

the user are recorded by* and replayed/echoed by �. The resulting

vibration signatures are utilized by � to build a training model of

the user’s phonatory vibrational signature. This training model can

then be used by � to authenticate any future user responses.

The attack scenario (Figure A.2) works similar to the benign use

scenario, where the attacker provides a response to EchoVib for

authentication, presumably imitating a legitimate user’s response.

EchoVib receives this response via * , relays it via �, and finally

verifies it against a stored model of the legitimate user’s response

by �. For secure authentication, � should be able to reject the

attacker’s response. In our approach, we believe that the device-

specific vibration features of speech cannot be copied by spectral

mimicking of the speech sample in the audio domain and hence
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Figure 2: Power spectral density of speech features in audio (left) and vibration domain
(right) for speakers “ljm", “lnh" from CMU_ Arctic dataset, and the synthesized speech for
“ljm” (bottom) generated using Festvox Transform voice conversion, speaking “You, you
would not keep the truth from me.”

the morphed samples created by the attacker will not generate the

same vibrations as the actual samples in the victim’s voice.

3.2 Design Rationale

Benign Setting: The underlying fundamental principle behind

EchoVib is the uniqueness of the speech pattern in vibration domain

as recorded by the motion sensors. In traditional voice authentica-

tion systems, speech features are extracted from a recording of a

legitimate user’s speech to build a speech profile for that user. We

term this process as speech pattern in the audio domain as the speech

features are extracted from the audio recording of the speech. In

contrast, our proposed system EchoVib uses the effect of speech on

motion sensors and extracts features from this recording of motion

sensor readings in the presence of speech to build a user’s profile,

hence termed as speech pattern in the vibration domain or phonetic

vibrations as explained in Section 1.

To observe differences in the individual speakers’ voice in the

vibration domain, we used a laser doppler vibrometer (PDV-100) [4]

to measure the phonatory vibrations in the body of the smartphone

during speech replay. The laser doppler vibrometer points a laser

beam at the vibrating surface (smartphone’s body in our experiment,

as shown by our experimental set-up in Appendix Figure A.1),

and uses the doppler effect on the reflected beam to measure the

vibrations. The sampling rate for the vibrometer, in our experiments

was 10kHz therefore the vibration effects can be captured with a

similar resolution as the audio samples.

Figure 2 shows the effect of audio on accelerometer when the sys-

tem plays back a speaker’s voice samplewhile recording accelerome-

ter readings. We tested two audio samples, one recorded for speaker

“ljm” and other for speaker “lnh” taken from the CMU_Arctic dataset

[41] speaking the same sentence “You, you would not keep the truth

from me”. In the audio domain, we can see noticeable differences

between the frequency distribution in the speech pattern of the

two speakers. This difference in the effect of speech of individual

speakers is also reflected in the vibration domain (captured by the

vibrometer) while also indicating that the frequency distribution

in the vibration domain for a particular speaker is different from

the frequency distribution in the audio domain. Thus, we believe

that the uniqueness of speech pattern among different speakers is

retained in the vibration domain as well.

Threat Model and Attack Setting: Audio domain voice authenti-

cation has been shown to be susceptible to multiple attack vectors

that aim to gain unauthorized access by presenting the authentica-

tion system, a speech sample closely resembling a legitimate user’s

voice response. In this work, we consider two such types of attacks

namely voice conversion attack and voice modeling attack.

Our attack model can be defined by three phases: voice sample

collection, voice synthesis model generation, and attacking voice

authentication systems using synthesized voice samples. In voice

sample collection, the attacker aims to collect sufficient speech sam-

ples in a targeted victim’s voice. The attacker can eavesdrop and

record the victim’s voice unknown to them using a hidden voice

recorder, or use publicly available speech samples in the victim’s

voice (through videos hosted on popular social media platforms).

In voice synthesis model generation, the attacker attempts to build a

voice synthesizing system, trained on the collected voice samples

of the victim in the first phase. The model takes in a speech sam-

ple (not in the victim’s voice) and generates a speech sample that

closely resembles the speech pattern of the victim.

Once the attacker has trained the voice synthesis system on

an intended victim’s speech samples, it can try to gain unautho-

rized access to sensitive information or resources and are secured

via a voice authentication mechanism. For this purpose, we also

assume that the attacker has temporary or permanent access to

the victim’s device, that is normally used by the victim, and holds

the sensitive information or resources. The attacker can then play

the synthesized voice sample to the device as a response to the

challenge-response setup and tries to get authenticated by the voice

authentication system. In another scenario, the attacker can try to

fool a remote voice authentication system (such as online banking)

by playing responses crafted by the voice synthesizing system in

the victim’s voice and attempts to exploit the victim by illegally

gaining access to the victim’s confidential data and resources (for

example, bank account details, passwords, PINs, etc.).

Figure 2 shows the original and attacker-generated speech for a

speaker in the audio and vibration domain (as captured by the laser

doppler vibrometer). In the audio domain, the power spectrum for

both speech samples shows a similar pattern, though the morphed

speech has more diffused power spread compared to the original

sample. However, the effect in vibration domain is different, espe-

cially in the frequency distribution pattern. Thus, we believe that

the vibration domain is helpful in capturing spectral features that

cannot be imitated by the morphing model of the attacker.

4 SYSTEM DESIGN

As detailed in Section 2.2, the phonatory vibrations from an audio

source have the capability to travel through the shared medium and

affect the motion sensors on a smartphone. While the effect may
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be limited due to the low sampling rate of the motion sensors (re-

stricted by the operating system), it can still be unique and utilized

for speaker authentication. In our authenticationmodel, we propose

to utilize the speech characteristics captured by the smartphone

motion sensors, for speaker identification. While the sampling rate

of MEMS motion sensors is around 8-10kHz, they are limited to a

much lower sampling rate as per the on-board Operating Systems,

such as Android on the smartphone (for example, approximately

200Hz or lower by Android). The fundamental frequency of an adult

male is between 85-180Hz and for an adult female, it ranges from

165-255Hz [17, 58]. As per the Nyquist sampling theorem, a device

with a sampling rate of 200Hz can only capture frequencies up to

100Hz from a signal. Thus, it may not be able to capture the full

range of frequencies present in the speech though due to harmonic

effect, still it may be possible, as our design shows, to capture some

part of the missing frequencies due to aliasing.

4.1 System Setup

In a challenge-response authentication protocol, the challenge con-

sists of a pre-determined passphrase asked by the verifier (interface

* ) and the valid audio response must have matching spectral fea-

tures to a verified user’s speech characteristics. In contrast to a

speaker verification system where the verification is performed on

the response from the user (an audio of the user’s voice), EchoVib

measures the response of motion sensors by playing back the user’s

response. In our setup, we use the smartphone’s microphone as

the interface * accepting the user’s response (challenge-response

setup) and the component � replaying/echoing it is constituted by

the smartphone’s on-board loudspeaker and its accelerometer.

4.2 Workflow

The workflow of the proposed authentication model is a multi-step

procedure as described below:
• Initialization/Training Phase: During the initialization phase, the

user is required to utter multiple phrases/sentences for train-

ing the authentication model. EchoVib replays the user’s voice

sample and records the corresponding accelerometer readings to

measure the impact of phonatory vibrations, generated during

the playback. EchoVib then extracts speech features from the

vibration domain (accelerometer readings) and trains a machine

learning classifier on the extracted feature set. The details of

the speech feature set and the machine learning classifier are

described in Section 4.3 and Section 4.3.1.

• User Credential Input Phase: Here, the user provides a voice

response to * for authentication. The user’s response is re-

played/echoed while the accelerometer is used to record its

phonatory vibrations by �. EchoVib uses a smartphone as both*

and � since it has the microphone to accept the user’s response,

the speakers for echoing the received response, and an on-board

accelerometer to record its phonatory vibrational signature. Thus,

it requires less hardware and more mobility at the cost of limited

sampling rate of the accelerometer.

• Feature Extraction and Verification Phase: The feature extraction

phase consists of extracting the required speech features from

the recorded accelerometer readings during speech replay. Once

extraction is complete, EchoVib (�, in particular) attempts to

recognize the speaker based on the speech features fed to the

classifier algorithm. If the speech is categorized as belonging to

one of the trusted users, the authentication is complete, and the

user is verified otherwise the user is rejected.

4.3 Feature Set & Classification Models

We now discuss the speech feature sets that can be used to identify a

user based on the provided motion sensor readings. In Section 5, we

provide a comparison of the two features sets for our classification.

Mel-frequency Cepstrum Coefficients: Mel-frequency Cep-

strum Coefficients (MFCC) are used in speaker identification where

the speech signal is expressed on a mel-frequency scale, consisting

of a logarithmically spaced filter modeled on the human ear recep-

tion of the speech. MFCC features are not affected by the changes

in the variation of the vocal chords during the speech generation

hence present a stable speaker characterization basis.

Time and Frequency Domain Feature Set: The time and fre-

quency domain features (Appendix Table A.1) consist of several

statistical measurements of the signal over x, y, and z axis. Some

features are calculated individually per axis (for example, minimum,

maximum, quartile, inter quartile range) while some are calculated

over all the three axes (total absolute area of the signal and total

signal magnitude averaged over time). Using both types of features

helps us identify the temporal characteristics of the signal in addi-

tion to its spectral features (insensitive to phase variation) making

it easier to analyze signal properties in a specific frequency band.

Feasibility Analysis:We now examine how the speech features

could identify different speakers and distinguish the attacker-

generated speech from the original speech. Figure 5 presents the

distribution of speech features derived from two speakers’ speech

samples in vibration domain, when they speak 100 different sen-

tences (CMU_ Arctic dataset). We observe that many speech fea-

tures in vibration domain such as second quartiles, third quartiles,

mean-cross rate and the ratio of standard deviation to mean derived

from Z accelerations and X accelerations show diverse distributions

for the two speakers. These speech features capture the unique

speech footprints of the speakers and can be utilized to identify the

speakers. Figure 6 compares distributions of the derived speech fea-

tures from the attacker-generated speech and the original speech of

speaker “ljm” in the vibration domain, when she speaks 60 different

sentences (CMU_ Arctic dataset). We find that the unique features

such as variance, standard derivation, second/third quartiles, ratio

of the standard deviation to mean, kurtosis, energy from the X, Y

and Z accelerations show different distributions for the morphed

and the original speech. Thus, these speech features can effectively

recognize the morphed speech from the speaker’s original speech.

Figure 3 and Figure 4 further illustrate the use of speech features

in our scheme. In particular, Z accelerations, second quartiles, third

quartiles and mean-cross rate, classify the two speakers’ speech

into two well-separated clusters, with the same speaker’s speech

in the same cluster as shown in Figure 3. Figure 4 illustrates that

the unique features like the variance of Z accelerations, the ratio of

standard derivation of X acceleration to its mean and the entropy of

Y accelerations distinguish the morphed speech from the original

speech of speaker “ljm”. By including more speech features, differ-

ent speakers can be better classified, and their morphed speech can

be better distinguished, in the higher dimensional feature space.
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“ljm” and “lnh” (CMU_ Arctic dataset) in vibration domain.
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4.3.1 Classification Algorithms. We test the following classification

algorithms on the two feature sets and choose the best performing

pair of classification algorithm and feature set (Section 5).

Support Vector Machine: It is a binary classifier that uses a hy-

perplane to divide the input variable space into two categories.

The hyperplane is determined during the training phase by using

optimization techniques to maximize the binary separation of input

variables. For a multi-class scenario, several binary support vector

machines can be used together to categorize the input variables.

Regression based Classifiers: A logistic regression classifier pre-

dicts the outcome of a dependent variable based on one or more

independent variables using a logistic function.

DecisionTree basedClassifiers: Random tree and Random forest

are decision tree based classifiers that tries to predict the outcome

of an output variable when supplied with multiple input variables.

5 IMPLEMENTATION AND EVALUATION

5.1 Setup and Preliminaries

Voice Datasets: We used Voxforge [8], CMU_Arctic [41], and

a speech dataset built using Amazon Mechanical Turk workers.

For Voxforge and CMU_Arctic datasets, we selected ten speakers

reading CMU_Arctic sentences. We use CMU_Arctic dataset as it

provides over 100 samples per speaker while Voxforge dataset was

chosen especially for testing voice conversion attacks as it has been

shown susceptible to these attacks [49]. “Amazon Mechanical Turk

dataset” was created for testing Lyrebird speech modeling attack

that uses Lyrebird web-based audio recording tool. To build this

dataset, we published an IRB approved Amazon Mechanical Turk

HIT and asked ten workers (American English accent) to speak and

record sentences provided by Lyrebird web-based tool. Participation

in the survey was voluntary and the participants could withdraw

any time. We converted all samples to WAV file format at 16 kHz

sampling rate. The spoken sentences in all of our datasets were

short in length averaging about 8 words per sentence.

Equipment: While EchoVib is designed to be used with any

speaker (loudspeaker or inbuilt device speaker) and motion sensors

(external motion sensors or on-board motion sensor), we have used

smartphone to implement EchoVib. A smartphone houses both a

speaker and on-board motion sensors on the same device, providing

a convenient setup for EchoVib. We used five different smartphones:

Samsung Galaxy S8, Samsung Note 5, Samsung Galaxy S6, Samsung

Note 4, and LG G3 to act as devices to implement EchoVib.

Samsung Galaxy S6 and LG G3 have Invensense MPU-6500 as

the embedded motion sensor chip housing a 6-axis gyroscope and

accelerometer. Samsung Galaxy Note 4 has Invensense MPU-6515

as the motion sensor chip that has a similar capability as MPU-6500.

Samsung Galaxy S8 has the LSM6DSL motion sesnor chip from

STMicroelectronics while Samsung Note 5 has K6DS3TR accelerom-

eter sensor from the same manufacturer. These motion sensor chips

have similar output data rates to the motion sensors on smart-

phones available in the market, restricted by Android platform to

be around 200Hz. In addition, they share similar physical charac-

teristics such as mechanical resonant frequency and precision with

other popular phones in the market. Hence, we believe our choice

of phones represents a fair variety of motion sensor capabilities.

On each smartphone, we logged the motion sensor readings

while a user’s speech response was being played through the

phone’s speakers. The phonewas kept flat on awooden surface with

no external motion being present in the surrounding environment.

Another possible scenario could be keeping the phone hand-held

where it may be in motion due to the user’s body movement. In case

of a user walking while holding the phone, it has been observed

[66] that the effect of such motion can be eliminated by applying

a high pass filter (> 2Hz) on the recorded signal. We used 10 fold

cross validation method for speaker classification. The sample space
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Table 1: 10 speaker classification on Voxforge dataset (10-fold cross validation). Random Forest yields highest accuracies.

Time frequency features Samsung Galaxy S6 Samsung Note 4 LG G3

Classifier Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Simple Logistic 0.87 0.84 0.85 0.88 0.88 0.88 0.94 0.94 0.94

Support Vector Machine (SMO) 0.89 0.88 0.88 0.89 0.89 0.89 0.95 0.94 0.94

Random Forest 0.96 0.96 0.96 0.91 0.91 0.91 0.94 0.94 0.94

Random Tree 0.87 0.87 0.88 0.79 0.79 0.79 0.92 0.92 0.92

J48 Tree 0.89 0.88 0.88 0.83 0.83 0.82 0.92 0.92 0.92

MFCC features

Simple Logistic 0.80 0.74 0.78 0.73 0.73 0.73 0.85 0.84 0.84

Support Vector Machine (SMO) 0.87 0.87 0.87 0.69 0.68 0.68 0.80 0.80 0.80

Random Forest 0.91 0.91 0.91 0.75 0.75 0.75 0.85 0.84 0.85

Random Tree 0.77 0.77 0.77 0.58 0.58 0.58 0.68 0.69 0.69

J48 Tree 0.84 0.84 0.84 0.73 0.73 0.73 0.82 0.82 0.82

is divided into ten disjoint subspaces, of equal size, in a random

manner. Nine subspaces are used for training while the remaining

one subspace is used for testing. We show the configuration of each

classifier in Weka in Appendix Table A.1.

Signal Processing andMachine Learning Tools: Once the sen-

sor readings were recorded by our application, we transferred the

log file containing the readings, to an offline system for processing.

In the real world, EchoVib can send the sensor readings to a trusted

cloud server that processes them for verification and returns the

result to EchoVib. EchoVib could also be implemented on the device

itself, provided the device contains enough processing resources

without any power constraint. For processing the sensor readings,

we used Matlab’s signal processing functions to extract the relevant

feature set from each recorded sample. The classification model was

trained and tested on Weka toolkit [15] that provides a workbench

for implementing machine learning algorithms.

Classification Metrics: For measuring the effectiveness of

EchoVib, we use True Positive and False Positive as metrics to deter-

mine what percentage of provided responses have been correctly

identified as belonging to a legitimate user (true positive) and what

percentage of provided responses have been incorrectly identified

for the legitimate user (false positive) and average the results over

the number of tested speakers. An effective authentication model

should have a high value of true positive and a very low value of

false positives from a security perspective. In addition, we also use

precision, recall, and F-measure to measure the efficiency of EchoVib

in classifying speakers. Precision is defined as the ratio of correct

class predictions to the total number of classes. Recall is defined

as the ratio of correct class predictions to total number of correct

class instances. F-measure is the harmonic mean of precision and

recall attaching equal weights to both precision and recall values.

5.2 Comparing Feature Sets and Classifiers

While both MFCC and time-frequency domain features can be used

to classify a speaker’s voice in audio domain, our implementation

requires a feature set that works well in the vibration domain. We

compared the accuracy of both the feature sets using the classifiers

(Section 4.3.1) and the metrics (Section 5.1). We tested three smart-

phones, multiple datasets, and signal processing tools (Section 5.1).

The results from our feature set comparison study on the Voxforge

dataset are detailed in Table 1. Using the metrics in Section 5.1,

we observe that time-frequency domain features performed better

than MFCC feature set with an F-measure value > 0.90 for all three

phone models compared to MFCC feature set that showed the best

F-measure value of 0.75 for Samsung Note 4 and 0.84 for LG G3. For

classification, Random Forest classifier outperformed other classi-

fiers with an F-measure value > 0.90 for all three phone models

compared to other classifiers (F-measure value slightly below 0.90).

Hence, in the rest of our evaluation, we use Random Forest along

with the time-frequency domain feature set.

Moreover, MFCC features are more suitable for audio signals,

sampled at a higher frequency than a motion sensor’s sampling

rate (restricted to approximately 200Hz by the Android platform in

our setup). Thus, we believe time-frequency domain features cap-

ture more information about the speech vibration than the MFCC

features, for a better classification accuracy. Therefore, we choose

time-frequency domain feature set and Random Forest classifier.

This result also affirms the premise of EchoVib to rely on effect

of speech impact on motion sensors in vibration domain. Motion

sensors, due to limited sampling rate, may not be comparable to the

microphones in capturing audio features. However, the measured

vibrations by the motion sensors can be unique as shown in our

results and on the power spectrum in Figure 2.

5.3 Speaker Classification and Verification

We used 58 voice samples each from the ten speakers belonging

to the Voxforge dataset, 100 samples each from the ten speakers

belonging to the CMU_Arctic dataset, and 50 samples from each

of the ten speakers in Amazon Mechanical Turk dataset. Since the

samples in these datasets consist of complete sentences, we use

the entirety of the recorded sensor reading for the voice sample to

extract relevant speech features from the sensor readings. We used

Galaxy S6, Note 4 and LGG3 for Voxforge and CMU_Arctic datasets,

and Note 4 and LG G3 for Amazon Mechanical Turk dataset.

Device Fingerprint Verification: EchoVib theorizes that the

speech vibrations captured in the vibration domain are unique

per device as each smartphone’s speaker and accelerometer behave

in a distinctive manner [20, 28, 29, 33]. We empirically verified the

unique fingerprints on mobile devices in terms of their vibration

response. We collected the “training” vibration samples on an LG

G3 phone using the Amazon Mechanical Turk dataset (58 single

words spoken by 8 speakers) through the phone’s loudspeaker for

building the EchoVib speaker classifier. We also collected a set of

vibration samples on another device with the same G3 phone model

for “testing”. The speaker classification accuracy, using 10-fold clas-

sification, was 0.114, which is lower than random guessing accuracy

(0.125) showing that each authentication model is inherently tied

to the device on which the training has been performed.

10-Speaker Classification: In 10-speaker classification, a multi-

class classifier labels the test samples as one of the ten predefined
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Table 2: Speaker classification using 10-fold cross validation and Random Forest classifier
(Voxforge Dataset)

10-Speaker Classification

Devices Precision Recall F-measure

Samsung Galaxy S8 0.97 0.97 0.97

Samsung Note 5 0.98 0.98 0.98

Samsung Galaxy S6 0.96 0.96 0.96

Samsung Note 4 0.91 0.91 0.91

LG G3 0.91 0.91 0.91

Table 3: Speaker verification using 10-fold cross validation and Random Forest classifier
(Voxforge Dataset)

Devices
True

Positive
False

Positive
Precision Recall F-measure

Samsung Galaxy S8 0.99 0.03 0.99 0.99 0.99

Samsung Note 5 0.99 0.01 0.99 0.99 0.99

Samsung Galaxy S6 0.99 0.10 0.99 0.99 0.98

Samsung Note 4 0.98 0.13 0.98 0.98 0.98

LG G3 0.97 0.13 0.98 0.98 0.98

Table 4: Speaker classification using 10-fold cross validation and Random Forest classifier
(CMU_ Arctic Dataset)

10-Speaker Classification

Devices Precision Recall F-measure

Samsung Galaxy S8 0.91 0.91 0.91

Samsung Note 5 0.98 0.98 0.98

Samsung Galaxy S6 0.91 0.91 0.91

Samsung Note 4 0.91 0.91 0.91

LG G3 0.91 0.91 0.91

Table 5: Speaker verification using 10-fold cross validation and Random Forest classifier
(CMU_ Arctic Dataset)

Devices
True

Positive
False

Positive
Precision Recall F-measure

Samsung Galaxy S8 0.99 0.05 0.99 0.99 0.99

Samsung Note 5 0.99 0.00 0.99 0.99 0.99

Samsung Galaxy S6 0.99 0.08 0.99 0.99 0.99

Samsung Note 4 0.98 0.11 0.98 0.98 0.98

LG G3 0.97 0.14 0.98 0.98 0.98

speakers, from our datasets. An example scenario could be a smart

home device used by a family, where the inbuilt smart voice assis-

tant’s response is tailored as per family members’ stored profiles.

For each dataset, we consolidated the speech samples from all the

speakers and performed speaker classification on the combined

dataset. Our results from 10-speaker classification using 10-fold

cross-validation method and Random Forest classifier are shown

in Table 2 (Voxforge dataset), Table 4 (CMU_Arctic dataset), and

Table 6 (“Amazon Mechanical Turk dataset”). For Voxforge dataset,

EchoVib showed speaker classification accuracy with an F-measure

> 0.99. CMU_Arctic dataset also provided a highly efficient F-

measure score (averaging 0.91) for EchoVib implementation with

Samsung Note 5 slightly outperforming other phone models.

Speaker Verification: Speaker verification uses a binary classifier

to assign a test sample to a particular speaker. Speaker verification is

performed regularly on more personal, non-shared devices such as

smartphones, geared to respond only to voice commands of a single

authorized entity. We use true positive and false positive metrics in

addition to precision, recall and F-measure for speaker verification

performance assessment. For the speaker verification task, in each

dataset, we trained the classifier on speech samples for one speaker.

We then tested the classifier on rest of the dataset that contains

speech samples from the same speaker and that from the rest of

the speakers in the dataset. This task is performed for each speaker

in each dataset. From Table 3 and 5, we observe that EchoVib on

Samsung Note 5 has better accuracy than other tested phonemodels

with a high true positive value of 0.99 and a low false positive of

Table 6: Speaker classification using 10-fold cross validation and Random Forest classifier
(Amazon Mechanical Turk Dataset)

10-Speaker Classification

Devices Precision Recall F-measure

Samsung Note 4 0.95 0.95 0.95

LG G3 0.99 0.99 0.99

Table 7: Speaker verification using 10-fold cross validation and Random Forest classifier
(Amazon Mechanical Turk Dataset)

Devices
True

Positive
False

Positive
Precision Recall F-measure

Samsung Note 4 0.98 0.08 0.99 0.99 0.99

LG G3 0.99 0.02 0.99 0.99 0.99

0.01. For CMU_Arctic dataset, Samsung Note 5 implementation of

EchoVib outperformed with a true positive value of 0.99 and a false

positive value of 0.00. Similar high values of true positives and low

values of false positives are acquired by the other tested phones in

the Amazon Mechanical Turk dataset as shown in Table 7.

6 ROBUSTNESS TO VOICE SYNTHESIS

Voice synthesis attack (Section 3.2), involves converting a source

speaker’s voice sample into a voice sample closely resembling a

target speaker’s voice. In our scenario, any entity that desires to

use the system is presented with a challenge-response setup where

a correct response is rewarded with authorized access or a voice

command setup where a voice command is executed only when it

is deemed to have originated from a verified speaker, following a

challenge-response setup. The challenge-response game can be text-

dependent, text-independent or text-prompted. In a text-dependent

setting, a pre-determined passphrase needs to be spoken in an

authorized user’s voice, while in a text-independent scenario, a

natural conversation is established that has to be in the authorized

user’s voice. Text-prompted setting requires the user to read aloud

a given phrase, randomly generated by the system, that should

match the voiceprint of a legitimate user.

Voice conversion attacks use statistical modeling techniques to

build a model of the target speaker’s voice pattern that is then

used to map source speaker’s voice pattern and regenerate speech

in target speaker’s voice [19]. This method requires only 10-20

sentences in a target speaker’s voice, to convert any given voice

sample into the target speaker’s voice, making these attacks very

practical and easy to launch. In voice modeling attack, deep learning

is used to build an acoustic model of target speaker’s voice, using a

few samples containing only a minute of audio and generate any

desired sentence in target speaker’s voice. Mukhopadhyay et al.

[49] showed that voice conversion attacks have a very high success

rate against many existing voice authentication services, hence we

test EchoVib to see if it is able to distinguish between an actual

legitimate user’s voice and a fake legitimate user’s voice that was

generated using voice conversion or voice modeling.

6.1 Attack Setup

Festvox Voice Conversion for the CMU_Arctic and the Vox-

forge Datasets: We used Festvox voice conversion technique to

create attacked samples for CMU_Arctic and Voxforge datasets. To

synthesize the victim’s voice, we used Festvox voice conversion

technique [59], which produces the synthesized samples by map-

ping features of a source speaker’s voice (i.e., the attacker) to a
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Table 8: Evaluation using Random Forest classification against voice conversion attack.
Over 90%morphed sample detection rate indicates EchoVib resilience against such attacks.

VoxForge Dataset CMU Arctic Dataset

Devices
True

Positive
False

Positive
True

Positive
False

Positive

Samsung Galaxy S8 0.99 0.01 0.99 0.00

Samsung Note 5 0.98 0.02 0.99 0.01

Samsung Galaxy S6 1.00 0.00 0.99 0.01

Samsung Note 4 0.91 0.19 0.93 0.09

LG G3 0.95 0.07 0.85 0.15

target speaker’s voice (i.e., the victim). Festvox employs acoustic-to-

articulatory inversion mapping based on Gaussian Mixture Model

followed by a spectral conversion between speakers for transform-

ing the source speaker’s voice to a target speaker’s voice. This con-

version is independent of the phonetic information of the speech.

Festvox voice conversion had been used in the past to create voice

samples [49] that have been used on Voxforge dataset to fool com-

mon voice authentication systems. To train the Festvox voice con-

version tool, we used 50 CMU Arctic sentences spoken by both the

source and the target speaker. We selected a male speaker from the

CMU Arctic dataset as the attacker (bdl speaker), and as the victim,

we selected five female and five male speakers from the CMU Arctic

dataset, and ten male speakers from the Voxforge dataset. After

training the system, we created 100 samples of the target speaker

by feeding the source speaker’s sample (bdl) to the trained system.

Lyrebird Voice Modeling for Amazon Mechanical Turk

Dataset: Voice modeling technology by Lyrebird [46] aims to gen-

erate speech samples that closely resemble human speech and claim

to sound more natural. This technology uses raw audio character-

istics to build an acoustic model of a person by training on a set

of voice samples from that person. Advanced machine learning

algorithms, such as deep learning, are utilized to train the acoustic

model and this model can produce speech samples mimicking a

person’s voice and transcribing to any desired phrase or sentence

[25]. To create the synthesized voice for the Amazon Mechanical

Turk dataset, we used the Lyrebird voice synthesis tool. Lyrebird re-

lies on deep learning techniques to extract features of the speaker’s

voice from only a few minutes of the speech and produce naturally

sounding samples in the speaker’s voice.

Since Lyrebird has not officially published their API, we created

the samples using Lyrebird web-based voice synthesizers. We pub-

lished aHIT onAmazonMechanical Turk and asked the participants

to record their voice on Lyrebird website. The participants were

compensated $3 for their effort. The participants were informed

that the purpose of this task was to evaluate the performance of

a speech synthesis tool and the samples would solely be used for

the research. Note that Amazon Mechanical Turk IDs do not iden-

tify the users and therefore the collected audio does not carry any

identification parameter. We created ten accounts on Lyrebird and

asked each of the 10 Turk users to log in to one of these accounts

and record their voice as instructed by Lyrebird web-based tool

speaking 50 sentences displayed on the website. These recorded

samples are used to train the Lyrebird speech synthesizer to create

a model of the speaker’s voice. Using this model, we generated 100

samples of the speaker’s voice using Lyrebird text to speech tool.

UserMovement andNoise Interference: Our experiments were

performed in a lab environment with the phone placed on a flat

surface or handheld. As mentioned in Section 5.1, user body move-

ment such as walking can be accounted for by applying a suitable

Table 9: EchoVib Evaluation using Random Forest classification against voice modeling at-
tack using Lyrebird. Morphed sample detection rate was over 85% indicating the resilience
of EchoVib against these attacks.

Amazon Mechanical Turk Dataset

Devices True Positive False Positive

Samsung Note 4 0.87 0.13

LG G3 0.99 0.00

high pass frequency filter to the accelerometer output [66]. Noise

present in the surroundings could affect the quality of the recorded

speech, which in turn could affect the vibrations during the speech

replay. A suitable white/brown noise filter could be applied to the

recorded speech to remove such ambient sounds. Our Amazon Me-

chanical Turk voice dataset was recorded by Amazon Mechanical

Turk workers in their own surroundings (home or office), different

from our quiet lab environment. We were still able to achieve high

speaker classification (over 90.00%) and acceptable false positive

rate (as low as 1%) for voice conversion attacks.

6.2 EchoVib vs. Voice Conversion Attack

We will now describe the performance of EchoVib based on its

ability to distinguish between a legitimate user’s voice and the

fake voice sample, generated in the legitimate user’s voice, by an

attacker. We train our Random Forest classifier on legitimate voice

samples of a speaker and evaluate the true positive and false positive

rate of this classifier, when presented with fake voice samples of

the targeted speaker. A low false positive rate would indicate that

EchoVib was able to identify most of the fake voice samples as not

belonging to the speaker and thus rejects them. This is a desired

trait for our speaker authentication system. As in Section 5.3, we

use the same datasets (58 samples per speaker for Voxforge, 100

samples per speaker for CMU_Arctic) for training our EchoVib

verification model with Random Forest. We show the true positive

and false positive rate for detecting the fake samples in Table 8.

It shows that EchoVib can detect fake samples with a high true

positive rate (> 0.90) on all phone models for Voxforge dataset

and CMU_Arctic dataset. Since the fake samples were generated

using a technique that is successful against voice authentication

system [49], our results seem to promise an improved success rate

in detecting the fake voice samples.

6.3 EchoVib vs. Voice Modeling Attack

We tested the Amazon Mechanical Turk dataset, created for gener-

ating morphed voice samples using Lyrebird deep learning technol-

ogy, against EchoVib. Similar to the voice conversion attacks, we

train a Random Forest classifier to identify a legitimate user’s voice

and then test the morphed voice samples against the classifier. A

high true positive rate for morphed samples would indicate that

EchoVib was successful in identifying (and thus rejecting) morphed

samples, not matching with any of the stored users’ phonatory

vibration patterns. The results (Table 9) indicate that morphed sam-

ples were identified correctly with a high true positive rate (≥ 0.85)

for all the implementations of EchoVib. Since, voice modeling tech-

niques aim to reproduce any speech sample from a limited set of

voice samples of a user, in a natural voice, our results show that

these tools cannot be exploited to fool EchoVib into accepting an

artificially generated voice sample as a legitimate user.
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Table 10: Speaker classification using 10-fold cross validation andRandomForest classifier
(Voxforge Dataset) with half-a-second and one-second echoed speech

10-Speaker Classification

Devices Precision Recall F-measure

Samsung Note 4 (Half-a-second) 0.71 0.72 0.71

LG G3 (Half-a-second) 0.76 0.76 0.76

Samsung Note 4 (One-second) 0.83 0.83 0.83

LG G3
(One-second)

0.82 0.82 0.82

6.4 Partial Speech Replay for Speaker
Classification

To evaluate how many words of the user’s speech to be

played/echoed back by EchoVib, we pick up phonatory vibra-

tions from partially replayed speech. We played back half-a-second

(around one word) and one-second recorded speech (around two

words) using Voxforge dataset. The 10-speaker classification re-

sults using 10-fold cross-validation and Random Forest classifier

are shown in Table 10. Although the performance degrades with

shorter echoed speech, our system can still obtain acceptable clas-

sification accuracy with only one or two echoed words.

7 ENTROPY ESTIMATION

We employ three metrics, min-entropy, V-success rate, and U-

guesswork [21], to measure the strength of the voice signature

in EchoVib. Min-entropy estimates the worst case security whereby

an attacker attempts to guess the most likely vibration signature

before giving up, while V-success rate measures the expected suc-

cess for the attacker limited to V guesses. U-guesswork estimates

the security against the attacker that aims to compromise a certain

proportion U ≤ 1 of signatures in EchoVib before quitting. Specifi-

cally, we calculated the min-entropy (�∞), V-success rate (_V ), and

U-guesswork (�U ) of each axis using the accelerometer readings

of the echoed speech samples for each speaker. We used the three

phones (Galaxy S6, Note 4 and LG G3), and V and U are set to 3/30

and 0.1/0.5, respectively. For each accelerometer axis, we report the

min-entropy, V-success rate, and U-guesswork estimates (in bits) in

Table 11. We note that the estimated U-guesswork values only have

a slight change across different U values. We believe this might

be caused by the distribution bias inherently existent within our

dataset, along with the small-scale data volume collected in our

work to demonstrate the feasibility of the approach. Similar to [62],

we also report the security estimate in bits, by combining them

across the three axes (Table 11). As the three axes may have relative

independent distributions, the total min-entropy, V-success rate, or

U-guesswork will be additive across the three axes.

We can compare our estimates with those of the other authen-

tication factors. In terms of password authentication, Wang et al.

[63] studied the strength of human-generated passwords and found

that the human-chosen 4-digit PINs offered an equivalent of 6.62

bits of security against an online guessing attacker limited to 30

guesses (V-success rate), while 6-digit PINs offered 7.24 bits of se-

curity. Against an offline guessing attacker looking for 50% success

rate (U-guesswork), the offered security is 8.41 bits (4-digit PINs)

and 13.21 bits (6-digit PINs). Vibration signatures in EchoVib offer

around 15-30 bits of security against attackers limited in guessing

attempts (online attacks) on different phone models. Against an

offline attacker aiming for 50% success rate, the vibration signatures

from the accelerometer offer 16-35 bits of security. This indicates

that the raw speech vibration signatures are at least as secure as

6-digit PINs, and the security could be increased by combining it

over different devices (leveraging device fingerprinting, given the

entropy measures across different devices are different).

Using other traditional biometric authentication factors, Adler

et al. [12] reported that the facial image biometrics has 47 bits

of security. Inthavisas et al. [40] argued that in a compromised

scenario where the attacker has access to the biometrics template,

the estimated entropy of their proposed speech cryptographic key

regeneration scheme is between 18-30 bits. The security of spoken

passwords and fingerprints is reported to be 46 bits [48] and 69

bits [26], respectively. In addition, Sadeghi et al. [55] showed that

the maximum achievable security strength of five state-of-the-art

electroencephalogram (EEG) based authentication systems is 83

bits using Naive Bayes Classifier and 36 bits using SVM classifier.

Although some of the aforementioned biometric studies report

higher entropies than our estimates, this comparison may not be

accurate due to the differences in the evaluation settings, different

subjects and, most importantly, the size of the datasets. An accurate

entropy estimation requires large scale datasets from thousands

of users in biometric systems. Our dataset is limited due to the

exploratory nature of our work introducing a new authentication

paradigm. To further improve the security of EchoVib against guess-

ing attacks, we could also collect and combine the user’s speech

samples from different devices. This scheme would allow us to cap-

ture the unique device fingerprint (background replay scenario in

Appendix Figure A.3). Future work should explore more accurate

entropy estimations using larger datasets. We emphasize that our

approach can also be seamlessly integrated with the traditional

voice biometrics systems to improve their security against guessing

attacks. We have demonstrated that our approach can effectively

defeat targeted voice synthesis attacks in the audio domain against

which voice biometrics are vulnerable.

8 DISCUSSION AND FUTUREWORK

Possible Implementation using Current Hardware: Since

EchoVib requires a replay/playback of the user’s response in a

challenge-response setup we envision two settings in which EchoVib

could be implemented (Appendix Figure A.3). Foreground Replay is

the setup that we use in our experiments where the user interface

already has an on-board loudspeaker and accelerometer (e.g., a user-

facing smartphone) and the capturing of phonatory vibrations is

performed by replaying the user’s response in the foreground (i.e.,

on the user’s device itself) via the on-board loudspeaker while its

on-board accelerometer records the resulting vibrations. Such a re-

play mechanism is suitable for the voice authentication applications

that secure a smartphone or an app on the smartphone.

The echoing speech functionality to capture speech vibrations

can also be transparently implemented on a supplementary entity

that has a loudspeaker to replay the user’s speech sample and an ac-

celerometer to capture the resulting vibrations. Such a background

replay mechanism can be feasible in practice, especially given that

many voice authentication and audio processing systems already

outsource their detection tasks to a cloud system that can acquire
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Table 11: Min-entropy (�∞), V-success rate (_V ), and U-guesswork (�U ) for the recorded sensor readings from different phone models

Samsung Galaxy S6 Samsung Note 4 LG G3
�∞ _3 _30 �0.1 �0.5 �∞ _3 _30 �0.1 �0.5 �∞ _3 _30 �0.1 �0.5

X axis 4.652 4.665 5.132 5.032 5.033 3.577 3.606 4.941 4.076 4.078 9.561 9.638 10.139 11.642 11.741

Y axis 4.684 4.659 5.120 5.003 5.005 3.439 3.469 4.913 3.829 3.830 9.380 9.461 9.991 11.380 11.486

Z axis 5.523 5.533 5.708 6.134 6.135 4.440 4.466 5.196 5.236 5.237 10.536 10.620 11.009 12.397 12.567

Sum across axes 14.859 14.857 15.960 16.169 16.173 11.456 11.541 15.050 13.141 13.145 29.477 29.719 31.139 35.419 35.794

the necessary resources for EchoVib. However, this implementation

may introduce a time-lag undesirable from a user’s perspective.

User Experience: In the partial speech replay experiment, EchoVib

produces acceptable performance on partial speech containing only

one or two words. This removes the tedious training requirement

from an ease of use perspective, when the user does not need

to speak long sentences repeatedly. The EchoVib design allows

authentication in the foreground (in the user’s vicinity) or in the

background (off-site dedicated system) depending on the use-case

(Section 8). With the feasibility of short sentences and even partial

speech replays along with the ability to perform authentication in

the background, EchoVib limits the loudness issue that may arise

when trying to get maximum response from the accelerometer,

during the speech playback in the authentication phase.

Potential Sophisticated Vibration Morphing Attack: Phona-

tory vibrations measured in the vibration domain form the back-

bone of the EchoVibmodel. A possible attack vector could be created

by attempting to generate vibrations that mimic the phonatory vi-

brations of a legitimate user. However, the phonatory vibrations

captured by the accelerometer are mapped non-linearly from the

speech signal captured by a microphone. In particular, these vibra-

tions, referred to as the phonetic vibrations in [57], are indicative of

the amplitude of the fundamental frequency of the voice and also

correlated to the pitch of the voice (except for basses).

To mimic the vibration patterns, the attack would have to mea-

sure the amplitude of the fundamental frequency of the original

voice and adjust the amplitude of the synthesized voice sample’s

fundamental frequency. In addition, it would have to imitate the

frequency features of the targeted voice. Since the fundamental

frequency’s amplitude also causes the vibrations, in addition to the

low frequency components of the speech sample, just enhancing

the low frequency components in the synthesized voice sample

may not be enough to fool EchoVib. Also, the vibration source

affects the vibration signal so the attacker also needs to closely

copy the device’s loudspeaker characteristics and the accelerometer

fingerprint during the targeted voice playback.

We also argue against an attacker that may attempt to mimic

the vibrations by obtaining several voice samples of a potential

victim and trying to generate a new voice sample containing same

vibration features as the victim’s samples. We believe that it may

be a hard task to replicate those vibration features either manually

or automatically. We do not consider a replay attack where the

attacker replays a prior eavesdropped sample of the victim’s voice.

The attacker can extract vibration features from the victim’s voice

sample and use a conversion technique (FestVox Transform [19] in

the vibration domain) to generate a new vibration signature having

similar features as the victim’s voice’s vibration signature.

Nonetheless, there still remains the task of mapping the con-

verted vibration signature back to the audio domain (as the au-

thentication system still expects an audio input) that we believe to

be a difficult, if not impossible, task, given the vibration features

are not the same as audio features that forms the audio signal. A

future investigation into the possibility and accuracy of such so-

phisticated attacks might confirm our insights. Nevertheless, our

proposed system serves its desired purpose of considerably raising

the bar against the most powerful audio domain attacks that are

effective against audio domain voice authentication systems.

Adversarial Machine Learning on Speaker Verification: Re-

cently, adversarial machine learning attacks on speech and speaker

verification systems have drawn much attention [10, 23, 43]. By

adding perturbations into the users’ speech, the crafted speech

can be falsely accepted as some adversary-desired speaker. Thus, a

machine learning classifier trained only in the audio domain can be

fooled into falsely accepting an unauthorized speaker. Some of the

perturbation generation techniques involve time-domain inversion,

random phase generation, high frequency addition or time scaling,

or a gradient estimation technique to construct a spoofed voice

sample. These features are different from the features associated

with vibration features such as the pitch range and distribution,

low range frequencies, and pitch change over time.

EchoVib avoids the vulnerabilities exploited by these attacks, as

perturbations applied only in the audio domain would not com-

pletely translate to the vibration domain, unless the perturbations

are crafted to be effective in both audio and vibration domains.

Further, most of these attacks seem to require a large number of

queries to succeed, which is impractical as any burst query attacks

can be easily blocked by throttling (web services consistently thwart

online password guesses by this mechanism). These attacks could

also be considered less powerful than the voice synthesis/morphing

attack that we evaluated EchoVib against which need to be trained

on a particular speaker’s speech pattern for morphing.

Limited Sampling Rate and Sensor Fusion: Limited sampling

rate of the motion sensors on smartphones was a challenge but even

in this limited capability, speech footprints recorded in vibration

domain have unique features that allow for an accurate speaker

classification. We expect the performance of EchoVib to improve in

a more natural environment if more sophisticated motion sensors

are utilized for authentication in vibration domain. In addition,

multiple sensors can possibly be used to artificially increase the

combined sampling rate, overcoming the imposed restriction on

the sampling rate from the Operating System.

Hardware Characteristics: The smartphone devices used in our

experiments were from multiple models, having different MEMS

motion sensor chips. However, the accelerometer specifications

of these chips were similar, having a full-scale acceleration range

of ±2/±4/±8/±16g. The smartphone body for the newer devices

like Galaxy S8, Note 5, and S6 have a glass back and front and

an aluminum frame. The older devices like LG G3 and Note 4,

however have a plastic back and a glass front. LG G3 and Note

4 have loudspeaker placed on the lower back of the device while
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Galaxy S6, S8, and Note 5 have bottom firing loudspeakers. While

it is possible that the loudspeakers firing on the back may produce

stronger vibrations (as the phones were placed on their back), the

newer phones have better speakers with more metallic/glass body.

Overall, we did not notice any major difference between the results

due to hardware differences.

Acoustic Interference from External Sources: In our work, we

have considered human voice transmission from the user to the

recording device (the smartphone) via aerial routes. The speech

could also be transmitted through walls, roofs or ground, and poten-

tially interfere with the accelerometer. However due to attenuation,

the energy contained in the acoustic wave is dissipated quickly.

Attenuation is directly proportional to the frequency and the dis-

tance traveled within the propagation medium. Given that speech

transmission via air is the shortest distance to the sensors, the least

amount of attenuation would occur in this scenario. Speech trans-

mission through walls, roofs or ground, involves travel through the

air followed by the solid medium. Anand et al. [14] showed that

human speech does not contain enough energy to travel by the

ground to a smartphone placed on a table and significantly impact

the accelerometer sensor.

9 CONCLUSION

In this paper, we proposed a novel voice-based authentication sys-

tem EchoVib, showing that vibrations generated from a person’s

speech and captured via the accelerometer on a smartphone are

unique and can be used for identifying thereby rejecting voice syn-

thesis attack. The user authentication accuracies, combined with

the voice synthesis attack identification accuracies lead us to be-

lieve that EchoVib can improve on the security of current voice

authentication systems against voice synthesis attacks without de-

grading the authentication accuracy. Since we implemented the

proposed scheme on a smartphone, our proposed authentication

system shows a potential to be implemented with minimum hard-

ware requirements (a loudspeaker and an accelerometer).
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A. APPENDIX

Figure A.1: The setup for surface vibration measurement using laser vibrometer.

Table A.1: Time-frequency features calculated from accelerometer readings on X, Y and Z axis

Time Domain

Minimum; Maximum; Median; Variance; Standard deviation; Range

CV: ratio of standard deviation and mean times 100

Skewness (3rd moment); Kurtosis (4th moment)

Q1, Q2, Q3: first, second and third quartiles

Inter Quartile Range: difference between the Q3 and Q1

Mean Crossing Rate: measures the number of times the signal crosses the mean value

Absolute Area: the area under the absolute values of accelerometer signal

Total Absolute Area: sum of Absolute Area of all three axis

Total Strength: the signal magnitude of all accelerometer signal of three axis averaged of all three axes

Frequency Domain

Energy

Power Spectral Entropy

Frequency Ratio: ratio of highest magnitude FFT coefficient to sum of magnitude of all FFT coefficients

Table A.2: Configuration details for Weka workbench Classification Algorithms

Classification Algorithm Configuration

Simple Logistic

Number of boosting iterations = 0
Max. number of boosting iterations = 500
Heuristic stop = 50
Output data precision = 2 decimal places

Support Vector Machine using
Sequential minimal optimization (SMO)

Complexity parameter = 1.0
Tolerance parameter = 0.001
Random seed = 1
Kernal= PolyKernal with cache size = 250007
and exponent = 1
Calibrator = Logistic with the log-likelihood
ridge value = 1.0e-8, precision = 4
Round-off error epsilon = 1.0e-12
Output data precision = 2 decimal places

Random Forest

Max depth = unlimited
Number of trees in the forest = 100
Bag size as percent = 100
Random number seed = 1
Number of threads used = 1
Output data precision = 2 decimal places

Random Tree

Max depth = unlimited
Min. total weight of leaf instance = 1.0
Min. variance proportion = 0.001
Random number seed = 1
Output data precision = 2 decimal places

J48

Min. leaf instances = 2
Confidence factor = 0.25
Random number seed = 1
Output data precision = 2 decimal points
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Figure A.2: EchoVib authentication model in an adversarial setup (voice synthesis attacks) where EchoVib uses vibration domain to correctly reject the morphed voice samples while current
state-of-the-art voice authentication systems incorrectly accept and authorize the morphed speech (as shown in [49])
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Figure A.3: EchoVib high-level overview of the benign setting depicting different use cases with foreground and background replay. Our implementation reported in this paper uses smart-
phone with its on-board loudspeaker and embedded motion sensor (accelerometer), which can be used in either foreground or background replay settings.
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